C12	$0.4610(2)$	$0.7161(1)$	$-0.03500(2)$	$0.0504(7)$
C13	$0.3834(2)$	$0.6750(1)$	$0.01930(2)$	$0.0446(6)$
C14	$0.3286(2)$	$0.5931(1)$	$-0.03040(2)$	$0.0436(6)$
C15	$0.3618(2)$	$0.5473(1)$	$-0.13910(2)$	$0.0501(7)$
C16	$0.3114(2)$	$0.4704(1)$	$-0.18420(3)$	$0.0582(8)$
C17	$0.2238(3)$	$0.4362(1)$	$-0.12390(3)$	$0.0630(8)$
C18	$0.1893(2)$	$0.4797(1)$	$-0.01510(3)$	$0.0610(8)$
C19	$0.2426(2)$	$0.5558(1)$	$0.03080(2)$	$0.0518(7)$
O20	$0.4658(2)$	$0.8365(1)$	$0.10530(2)$	$0.0638(7)$
Cl	$0.1966(1)$	$0.6067(1)$	$0.17020(1)$	$0.0808(3)$

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.
Geiger, W. B. \& Conn, J. E. (1945). J. Am. Chem. Soc. 67, 112-116.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kamoda, M. (1954). J. Agric. Chem. Soc. Jpn, 28, 791-794.
Misra, S. S., Kushwaha, S. C. \& Lal, J. B. (1970). Proc. Natl Acad. Sci. India Sect. A, 40, 468-471.
Misra, S. S., Tewari, R. S. \& Nath, B. (1971). Indian J. Appl. Chem. 34, 260-264.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Tokuno, K., Matsui, M., Miyoshi, F., Asao, Y. \& Oshashi, T. (1986). Acta Cryst. C42, 85-88.
Zabel, V., Watson, W. H., Cassels, B. K. \& Langs, D. A. (1980). Cryst. Struct. Commun. 9, 461-467.

Acta Cryst. (1996). C52, 2545-2547

(μ_{2}-Pinacolato- $\boldsymbol{O}, \boldsymbol{O}^{\prime}$)-bis(pinacolato-O, \boldsymbol{O}^{\prime})diboron

Willam Clegg, ${ }^{a}$ Andrew J. Scott, ${ }^{a}$ Chaoyang Dal, ${ }^{b}$ Gerry Lesley, ${ }^{b}$ Todd B. Marder, ${ }^{b}$ Nicholas C. Norman ${ }^{c}$ and Louis J. Farrugia ${ }^{d}$
${ }^{a}$ Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, ${ }^{b}$ Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3GI Canada, 'School of Chemistry, University of Bristol, Bristol BS8 ITS, England, and ${ }^{d}$ Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland. E-mail: w.clegg@ncl.ac.uk
(Received 3 June 1996; accepted 19 June 1996)

Abstract

The title compound, 2, ${ }^{\prime}$-(2,3-dimethyl-2,3-butanediyldioxy)bis($4,4,5,5$-tetramethyl-1,3,2-dioxaborolane, $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~B}_{2} \mathrm{O}_{6}, \mathrm{~B}_{2} \mathrm{pin}_{3}$, has two trigonal planar B atoms, each chelated by one pinacolato group, linked by a third pinacolate. The molecule is centrosymmetric, with an exactly anti conformation for the bridging pinacolate, and the two Bpin five-membered rings have a twist conformation with torsion angle $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}=$
$-27.39(13)^{\circ}$. The $\mathrm{B}-\mathrm{O}$ bonds to the bridging pinacolate $[1.353$ (2) \AA A are slightly shorter than the chelate $\mathrm{B}-\mathrm{O}$ bonds [1.367 (2) and 1.373 (2) \AA].

Comment

The compound (pin) $\mathrm{B}(\mu$-pin $) \mathrm{B}(\mathrm{pin}), \mathrm{B}_{2} \mathrm{pin}_{3}$ (pin $=$ $\mathrm{OCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}$), was observed as an impurity in the reaction of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ with pinacol and HCl , a procedure used for the preparation of $\mathrm{B}_{2} \mathrm{pin}_{2}$, bis(pinacolato$O, O^{\prime}$) diboron (Nöth, 1984). The compound $\mathrm{B}_{2} \mathrm{pin}_{2}$ is of interest with regard to the recently developed metalcatalysed diboration of alkynes (Ishiyama, Matsuda, Miyaura \& Suzuki, 1993; Iverson \& Smith, 1995, 1996; Ishiyama et al., 1996; Lesley et al., 1996) and alkenes (Baker, Nguyen, Marder \& Westcott, 1995) and the palladium-catalysed synthesis of (aryl)B(pin) compounds (Ishiyama, Murata \& Miyaura, 1995). It appears that $\mathrm{B}_{2} \mathrm{pin}_{3}$ is also formed in reactions of pinacol with BH_{3}.thf (Lesley et al., 1996) or BCl_{3} (Herberich \& Fischer, 1996). Although studies of the reactivity of $\mathrm{B}_{2} \mathrm{pin}_{3}$ with metal complexes have not yet been carried out, the recently observed reactions (Lesley et al., 1996) of the analogous compound B_{2} cat ${ }_{3}$ (cat $=1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, catecholato- O, O^{\prime}) with $\left[\left(\mathrm{PPH}_{3}\right)_{2} \operatorname{Pt}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, a catalyst precursor for alkyne diboration, suggest that due care should be taken to remove any $\mathrm{B}_{2} \mathrm{pin}_{3}$ impurity that may exist in batches of $\mathrm{B}_{2} \mathrm{pin}_{2}$ to be used for diboration reactions.

Initial attempts to determine the crystal structure of $\mathrm{B}_{2} \mathrm{pin}_{3}$ at room temperature were unsatisfactory, with a rapid decline in intensity at higher Bragg angles and with very high displacement parameters, especially for methyl groups, but the structure is qualitatively similar to that determined at low temperature and reported here. The molecule is centrosymmetric in the solid state. Each of the two B atoms is chelated by one pinacolato group and the two B atoms are linked by a third pinacolate. The boron displays characteristic trigonal planar coordination, with a distortion of the angles from 120° because of the chelate ring formation [O1-B1O2 reduced to $113.56(12)^{\circ}$] and steric hindrance by the methyl groups of the bridging pinacolate [Ol-B1-O3 expanded to $126.79(12)^{\circ}$; B1 lies essentially in the plane of its three bonded O atoms [deviation 0.003 (2) Å].

The $\mathrm{BO}_{2} \mathrm{C}_{2}$ five-membered boronate ester rings have a twist conformation, with one C atom on one side [by 0.244 (2) \AA] and one on the other side [by 0.214 (2) \AA] of the BO_{2} plane, and with a $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ tor-

Fig. 1. The molecular structure with atom labels and 50% probability ellipsoids for non-H atoms.
sion angle of $-27.39(13)^{\circ}$. A very similar conformation has been found in other Bpin units, with torsion angles (ignoring sign) of $28.68(12)$ and $29.27(12)^{\circ}$ (Clegg, Scott, Lesley, Marder \& Norman, 1996; this paper discusses a wide range of Xpin ring conformations), 26.9 (2) and 29.5 (2) ${ }^{\circ}$ (Deloux, SkrzypczakJankun, Cheesman \& Srebnik, 1994), and $33.0(4)^{\circ}$ (Seeger \& Heller, 1985), but almost planar rings occur in $\mathrm{B}_{2} \mathrm{pin}_{2}$, with a torsion angle of only 1.6° (Nöth, 1984). The bridging pinacolate in B_{2} pin $_{3}$ has an anti conformation with an exactly $180^{\circ} \mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle. The difference in the conformation of the chelating and bridging units does not significantly affect the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bond lengths and the angles at the C atoms. The $\mathrm{B}-\mathrm{O}$ bonds to the bridging pinacolate are slightly shorter than those within the chelate rings. A similar but larger difference [ca $0.030(4) \AA$] was found in the structure of B_{2} cat ${ }_{3}$ (Westcott, Blom, Marder, Baker \& Calabrese, 1993). The main difference between the structures of $\mathrm{B}_{2} \mathrm{pin}_{3}$ and B_{2} cat $_{3}$ is the enforced cis geometry of the bridging catecholate in contrast to the anti conformation of the bridging pinacolate, resulting in near-orthogonality of the two BO_{3} planes in the catecholate compound because of steric interactions, while these two are almost coplanar in the pinacolate compound, for which the central $\mathrm{B}_{2} \mathrm{O}_{6} \mathrm{C}_{2}$ core is close to planar [r.m.s. deviation $0.081 \AA$ A].

The crystal structure of $\mathrm{B}_{2} \mathrm{pin}_{3}$ has no notably short intermolecular contacts.

Experimental

Crystals of $\mathrm{B}_{2} \mathrm{pin}_{3}$ were first obtained from treatment of $\mathrm{B}_{2} \mathrm{pin}_{2}$ with a large excess of 4 -picoline, and a preliminary room-temperature structure was determined from this sample. The crystals used in the present low-temperature study were obtained as a by-product from a preparation of $\mathrm{B}_{2} \mathrm{pin}_{2}$, and were grown by slow evaporation of solvent from a solution in diethyl ether/hexanes. The compound was characterized by ${ }^{1} \mathrm{H}(\delta 1.36, s, 12 \mathrm{H} ; 1.23, s, 24 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{3} \mathrm{H}\right\}(\delta 81.85,4 \mathrm{C}$; $79.40,2 \mathrm{C} ; 24.07,8 \mathrm{C} ; 22.65,4 \mathrm{C}$) and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}(821.4)$ NMR spectroscopy in CDCl_{3} solution at room temperature on a Bruker AM200 spectrometer.

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~B}_{2} \mathrm{O}_{6}$
$M_{r}=370.09$

Mo $K \alpha$ radiation $\lambda=0.71073 \AA$

Monoclinic
$P 2_{1} / c$
$a=10.6038$ (11) \AA
$b=10.4252(11) \AA$
$c=10.8255(12) \AA$
$\beta=118.675(2)^{\circ}$
$V=1050.0(2) \AA^{3}$
$Z=2$
$D_{x}=1.171 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD
diffractometer
ω rotation with narrow frames
Absorption correction:

> none

6359 measured reflections
2417 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0471$
$w R\left(F^{2}\right)=0.1064$
$S=1.133$
2414 reflections
125 parameters
H atoms riding (see text)
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0265 P)^{2}\right.$ $+0.5007 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

Cell parameters from 3946 reflections
$\theta=2.19-28.37^{\circ}$
$\mu=0.083 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Block
$0.24 \times 0.18 \times 0.12 \mathrm{~mm}$
Colourless

2048 observed reflections

$$
[I>2 \sigma(I)]
$$

$R_{\text {int }}=0.0429$
$\theta_{\text {max }}=28.60^{\circ}$
$h=-14 \rightarrow 10$
$k=-11 \rightarrow 14$
$l=-11 \rightarrow 14$

The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.3° in ω. The crystal-to-detector distance was 4.94 I cm . Coverage of the unique set is virtually complete to at least 26.4° in θ. Crystal decay was monitored by repeating the initial frames at the end of data collection and analysing the duplicate reflections.
H atoms were placed geometrically and refined with a riding model including free rotation about $\mathrm{C}-\mathrm{C}$ bonds, and with $U_{\text {iso }}$ constrained to be 1.5 times $U_{\text {eq }}$ of the carrier C atom.

Data collection: SMART (Siemens, 1995). Cell refinement: local programs. Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXTL (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and local programs.

We thank EPSRC for financial support. TBM thanks NSERC of Canada for research support, and the University of Newcastle upon Tyne for a Senior Visiting Research Fellowship. TBM, NCN and WC thank NSERC and the Royal Society (London) for support of this collaboration through their Bilateral Exchange Programme.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1397). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Baker, R. T., Nguyen, P., Marder, T. B. \& Westcott, S. A. (1995). Angew. Chem. Int. Ed. Engl. 34, 1336-1338.
Clegg, W., Scott, A. J., Lesley, G., Marder, T. B. \& Norman, N. C. (1996). Acta Cryst. C52, 1989-1991.

Deloux, L., Skrzypczak-Jankun, E., Cheesman, B. V. \& Srebnik, M. (1994). J. Am. Chem. Soc. 116, 10302-10303.

Herberich, G. E. \& Fischer, A. (1996). Organometallics, 15, 58-67.
Ishiyama, T., Matsuda, N., Miyaura, N. \& Suzuki, A. (1993). J. Am. Chem. Soc. 115, 11018-11019.
Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. \& Miyaura, N. (1996). Organometallics, 15, 713-720.
Ishiyama, T., Murata, N. \& Miyaura, N. (1995). J. Org. Chem. 60, 7508-7510.
Iverson, C. N. \& Smith, M. R. III (1995). J. Am. Chem. Soc. 117, 4403-4404.
Iverson, C. N. \& Smith, M. R. III (1996). Organometallics. Submitted.
Lesley, G., Nguyen, P., Taylor, N. J., Marder, T. B., Scott, A. J., Clegg, W. \& Norman, N. C. (1996). Organometalics, 15. In the press.
Nöth, H. (1984). Z. Naturforsch. Teil B, 39, 1463-1466.
Seeger, K. \& Heller, G. (1985). Z. Kristallogr. 172, 105-109.
Sheldrick, G. M. (1994). SHELXTLIPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Westcott, S. A., Blom, H. P., Marder, T. B., Baker, R. T. \& Calabrese, J. C. (1993). Inorg. Chem. 32, 2175-2182.

